Recombination-dependent repair of DNA double-strand breaks with purified proteins from Escherichia coli.
نویسندگان
چکیده
We have developed an in vitro system in which repair of DNA double-strand breaks is performed by purified proteins of Escherichia coli. A segment was deleted from a circular duplex DNA molecule by restriction at two sites. 3' single-stranded overhangs were introduced at both ends of the remaining linear fragment. In a first step, RecA protein catalyzed the formation of a D-loop between one single-stranded tail and a homologous undeleted supercoiled DNA molecule. In a second step, E. coli DNA polymerase II or III used the 3' end in the D-loop as a primer to copy the missing sequences of the linear substrate on one strand of the supercoiled template. Under proper conditions, the integrity of the deleted substrate was restored, as shown by analysis of the products by electrophoresis, restriction, and transformation. In this reaction, DNA synthesis is strictly dependent on recombination, and repair is achieved without formation of a Holliday junction.
منابع مشابه
The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملHomologous Recombination by the RecBCD and RecF Pathways
In all cells, genetic recombination is used to repair DNA breaks and, as a result, genetic information is exchanged between homologous DNA molecules. Discontinuities in DNA strands, specifically double-strand DNA breaks and single-strand DNA gaps, attract the enzymes responsible for the initiation of homologous recombination. In wild-type Escherichia coli, two distinct pathways are responsible ...
متن کاملPalindromes as substrates for multiple pathways of recombination in Escherichia coli.
A 246-bp imperfect palindrome has the potential to form hairpin structures in single-stranded DNA during replication. Genetic evidence suggests that these structures are converted to double-strand breaks by the SbcCD nuclease and that the double-strand breaks are repaired by recombination. We investigated the role of a range of recombination mutations on the viability of cells containing this p...
متن کاملMu Insertions Are Repaired by the Double-Strand Break Repair Pathway of Escherichia coli
Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5' flaps attached to...
متن کاملGenetic recombination through double-strand break repair: shift from two-progeny mode to one-progeny mode by heterologous inserts.
Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 27 شماره
صفحات -
تاریخ انتشار 1997